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Introduction

The concept of inverse problems in linear re-
gression can be split into three key ideas:

1 Discover relationship between response
variable(s) and explanatory variable(s)

2 Take some ’desired’ value(s) for the
response(s)

3 Find values for the explanatory variable(s)
that would produce desired response(s),
given relationship found in forward model

Area of research. The aim of this PhD is to
improve the efficiency and effectiveness of 3D
printing; here, this is by modelling flow charac-
teristics of the powder used in terms of other
powder properties, and then choosing those
properties to optimise flow characteristics.
Why Bayesian?

1 Data involves replicate measurements on
multiple groups of powder, which implies
measurement error, which implies
errors-in-variables models; the error is
then naturally accounted for in a Bayesian
setting

2 Inverting the relationship between the
response variable(s) and the explanatory
variable(s), particularly in a multivariate
case, is relatively straightforward

Forward model

The forward model describes finding the re-
lationship between the explanatory variable(s)
and the response variable(s).
The example given here will consider a bivariate
response and two explanatory variables:(

Ỹ1i
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The model is written in JAGS (Just Another
Gibbs Sampler) and run in R using the package
rjags. Uninformative priors are placed on the
β matrix, the τ precisions and the T precision
matrices.
The plots in Figures 1 and 2 show the fitted val-
ues Ŷi plotted against the posterior means of Ỹi,
where Ŷi is taken to be the product of the pos-
terior mean β matrix and the posterior mean of
X̃i.

Figure 1: Ŷi vs. Ỹi,post for tapped density

Figure 2: Ŷi vs. Ỹi,post for angle of repose

Backward model

The idea here:
1 Testing the backward model — produce
’desired’ response Y ∗, with specific values
of X∗

2 Take the product of the posterior mean of
β with the vector X∗, then assume X∗ to
be unknown

3 Take r = 1, . . . ,2000 random samples

from joint posteriors of β (matrix of
regression coefficients), TỸ and TX̃

4 For each r, fit the model below and take a
random sample from the posterior of X∗

5 Combine together to make posterior
distribution of X∗(
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Note that the superscript used in the β matrix
refers to a particular sample from the posterior
distribution of β , not a power of β .

Figure 3: Joint posterior distribution of CBD and SE given ’desired’
tapped density of 0.5327 and ’desired’ angle of repose of 0.2248

Future work

1 Experiment with prior distribution on X∗

2 Produce more plots showing how
probability of producing desired response
varies as values of explanatory variables
vary

3 Experiment with more complicated
forward models and see how that affects
backward model
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