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Introduction Places CNN

In the UK, especially London, house prices have been on the rise for decades. Therefore,
obtaining a model that could predict house prices reasonably well is appealing to individuals and
corporations alike. The model could aid them in making informed decisions regarding
investments and relocation, for example. Intuitively, houses that are worth more are more
aesthetically pleasing. However, including information on visuals in a computational model has
been proven challenging due to a lack of large scale quantitative data. That was until recently.
The availability of Google Street View images has increased over the past decade, and we wish to
see if we can capture any new information from them.

Although many features associated with London
in our model make intuitive sense, some are
unexpected. Features outside of the top 20 that
are associated with London include ‘windmill’ and
‘rice paddy’. To investigate why this is the case, we
explore the top 3 images labelled ‘rainforest;
‘windmill; ‘rice paddy;, and ‘golf course, as shown
in Fig. 5. According to the CNN, lush groups of
trees are rainforests; large white spaces are
windmills; green spaces behind fences are rice
paddies; green spaces with trees are golf courses.
The CNN identifies patterns and shapes in images
and gives them labels, but the labels themselves
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Methodology
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We ask two questions: 5 Figure 5: Interesting features

—
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Figure 1 displays the methodology which consists of two Y §®,
parts. At the image level, we download images across Features & , g
London and extract values of features from Places Scene Probabilities House Price To infer the relative change in house prices over the past decade, §
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changes in relative rank from 2005-2006 and 2015-2016 in an
elastic net model.

[1,2]. These values essentially tell us how likely a certain
feature is to appear in a given image. At the MSOA leve],
where MSOAs are ONS-defined geographical areas, we
average the feature values per MSOA and use them to
predict median house prices in London from 2015-2016
and their relative change over the decade [3]. Figure 1: Methodology outline
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Figure 6 shows the top 20 features from the model that are
positively and negatively associated with higher relative
changes. Some coefficients have swapped. ‘Hospital’ was
previously a negative coefficient and ‘office building’ was a
positive coefficient. Figure 7 shows the observed and predicted
relative change. There appears to be a center versus suburbs
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