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Nonlinear matrix recovery using a lifting
Recover a high-rank matrixM ∈ Rn×s from linear measurements 〈M,Ai〉 = bi, i = 1, . . . ,m

under the assumption that there exists a lifting map ϕ Rn −→ RN such that the

nonlinear structure in M makes Φ(M) low-rank.

Rn

M = [m1 m2 · · ·ms]

ϕ RN

Φ(X) = [ϕ(m1) ϕ(m2) · · ·ϕ(ms)]

Optimization formulation
Assume r = rank (Φ(M)) is known.
To solvemin

X
rank(Φ(X))

A(X) = b,

where the affine constraint
A(X) = b denotes the measurements
on the matrix X.

We minimize a nonconvex approximation of the
rank 

min
U,X

‖Φ(X)− PUΦ(X)‖2F

U ∈ Grass(N, r)
A(X) = b,

(1)

where Grass(N, r) is the Grassmann manifold, the
set of all subspaces of dimensions r in RN .

Case Study 1 : algebraic varieties and Union of Subspaces
Recovery of algebraic varieties and union of subspaces models
using the polynomial lifting as in [4]. The matrix M is said to
follow an algebraic variety model if there exists a family of q
polynomials of n variables (pj)j=1,...,q (of degree at most d) such
that

pj(mi) = 0, for every column mi of M.

The polynomial map of degree d lifts the data points to a multivariate monomial basis

φd Rn −→ RN , φd(x) = xα, |α| ≤ d, where α is a multi index of non-negative integers

with xα .
= xα1

1 xα2
2 . . . xαn

n and |α| =
∑n
i=1 αi. For the vector of coefficients cj that defines the polynomial pj in

the monomial basis, we have c>j φd(mi) = 0 for every i, j. Therefore, rank(Φd(M)) ≤ min(N − q, s) and the
lifted matrix Φd(M) is rank deficient when M belongs to an algebraic variety (including union of subspaces).

Case Study 2: Clustering with missing data

Recovery of clusters with missing data using the Gaussian kernel as lifting. The kernel
represents the inner product of implicit features (reproducing kernel Hilbert space).

kgij(M,M) = e
−
‖mi −mj‖22

2σ2

• mi close to mj =⇒ kgij(M,M) ≈ 1

• mi far from mj =⇒ kgij(M,M) ≈ 0

• rank (kg(M,M)) ≈ number of clusters

M

kg(M,M) ≈
1
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Optimization algorithms
A) Riemannian optimization

Second order Riemannian trust region method on the Grassmannian [1].
Solves a subproblem at each step on the tangent space of the Riemannian manifold
Grass(N, r)× {X A(X) = b}

∆+ =


argmin

∆∈T(Uk,Xk)

f(Uk, Xk) + 〈gradf(Uk, Xk),∆〉+
1

2
〈Hess f(Uk, Xk)[∆],∆〉

‖∆‖ ≤ ρ.

• Solution of subproblem produces a candidate using the retraction map R(Uk,Xk)(∆+)
which is assessed by comparing model decrease to function decrease. The trust
region radius is adjusted accordingly.

Implemented in the Manopt toolbox [3]. RTR is a globally convergent method to second
order crital points.

Theorem [2](Global complexity of RTR) If f ◦R has a Lipschitz Hessian with
constant independent of x and f is bounded below then RTR returns x with
grad f(x) ≤ εg and λminHess f(x) ≥ −εH in O(max{1/ε3

H , 1/ε
2
gεH}) iterations.

B) Alternating minimization

At Xk, solve Uk+1 =

argmin
U

‖Φ(Xk)− PUΦ(Xk)‖2F

U ∈ Grass(s, r).

At Uk+1, solve Xk+1 =

argmin
X

‖Φ(X)− PUk+1
Φ(X)‖2F

A(X) = b.

−→ Truncated svd of
Φ(Xk)

−→ Projected descent
method

Theorem (Global complexity of AM): For εx > 0, εu > 0 the number of gradient
steps Ngrad and number of svd Nsvd such that∥∥∥∥(gradUf(Uk, Xk), PKerA∇Xf(Uk, Xk)

)∥∥∥∥ ≤ εu + εx is

Ngrad +Nsvd ≤
(f0 − f∗)

min(εu, εx)2 min
(

1
2Lu

, αβ
) .

where Lu is a gradient Lipschitz constant, α is a lower bound on the step sizes and
β ∈]0, 1[ is the Armijo sufficient decrease constant and f∗ is a lower bound on f .

Numerical results
Performance of the algorithms

Comparison of first and second order
algorithms above on the recovery of a union of subspaces
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Riemannian second order method preferable in high accuracy
regime over first order alternating minimization (linear vs.

superlinear local convergence rate)

Recovery

For m large enough, solving (1) with arbitrary initialization recovers the matrix M . Grayscale below gives the proportion of
union of subspaces matrices recovered up to ‖X −M‖2F ≤ 10−3 or the proportion of correct clustering over 50 test problems
for every pair of parameters.
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Recovery for 2 subspaces in R10 of increasing
dimension. Recovery for small dimensions
only.

Recovering an increasing number of
subspaces of dimension 2 in R10. Requires
much less measurements than fewer high
dimensional subspaces.
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Clustering possible with up to 50% of
missing entries. The quality of recovery
depends on the spectral gap of the Gaussian
kernel.
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