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Mutual Information Estimation

The Mutual Information (MI) between two random variables measures the reduc-
tion in uncertainty of one random variable due to information obtained from the
other. lts applications include decision trees in machine learning, independent
component analysis (ICA), gene detection and expression, link prediction, topic
discovery, image registration, feature selection and transformations, and chan-
nel capacity. We develop efficient mutual information estimation systems with a
set of estimators that produce accurate results irrespective of sample size, data
dimension, and correlation. The systems include bias correction approaches,
new approximate k-th Nearest Neighbour (k-NN) estimators, and new algorithms
based on fast and sparse Johnson-Lindenstrauss transforms.

Mutual Information and kNN Estimators

Mutual information is the reduction in uncertainty about a variable X after ob-
serving another variable Y. Mutual information can be calculated using entropy,
referred to as 3H-principle:

[(X:Y)=HX)+H(Y)-HX,Y),
where H(X) and H(X,Y) are the entropy and joint entropy, defined as

H(X) = —Ellog fx(z)], H(X,Y):=—Ellog fxy(z,y)l,
with fx the density of X, and fx y the joint density of (X,Y).

Among the various methods to estimate MI, the k-th nearest neighbour (£-NN)
estimators are singled out due to their superior theoretical and practical perfor-
mance. The idea of £-NN is to estimate the density fx(z) locally at x = z; for

1 =1,2,---, N points in R4 by finding the distance ef’p from x; to its k-th nearest
neighbour in ¢, (p > 1) space. The local estimate fx(z;) is then given by:
A k/N
€T;) = :
fX( ’L) Vp,d<€§7p>d

where V:¢(r) denotes the volume of an ¢,-ball of radius 7 in R%. From this, we
obtain an estimate of entropy by:
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Fig. 1: (Left) Mutual Information (Right) £-NN Estimator
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Existing Methods

A k-NN entropy estimator with bias correction was introduced by Kozachenko
and Leonenko in 1987 [4] (KL). In 2004, Kraskov et.al. [1] proposed an improved
k-NN estimator of mutual information (KSG). In 2017, Gao et.al. [7] realised that
the better performance of KSG is due to a correlation boosting effect. They
then introduced a bias-improved KSG (BI-KSG) estimator. Lord et.al. [8] noticed
that most k-NN methods use regular local volume elements, which allows the
estimators to be asymptotically consistent. They introduced the geometric k-
NN estimators (G-kNN) based on elliptical local volume elements. Their method
outperforms KSG for small sample size and highly dependent samples, but it is
not corrected for asymptotic bias. We tested these methods on Gaussian and
uniform distributions, see Figure 2.
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Fig. 2: (Top)Uniform distribution with Gaussian noise (Bottom)Gaussian distribution

Bias Improvement and Approximate kNN

We can reduce the bias of an estimator in various ways:

1. By excluding the center when estimating the local densities, we keep the
virtue of G-KNN while improving the bias.

2. Since the estimation of mutual information in G-kNN is based on three entropy
estimates, cancelling out £-NN distance terms can improve bias;

3. By using approximations of the expectation, we could add correction terms to
improve the bias;

4. Choosing a large £ for generating local geometry and a small k£ which depends
on the generated local geometry to estimate local density.

Inspired by approximate £-NN search algorithms, we believe that there will be an
iImprovement of efficiency if we find a point x?{ which is close to the k" nearest

neighbour z;. of x; with distance x?{ — Tk, < Tef’p In each local estimate. Intro-

ducing small uncertainty may also improve the performance of the estimations.
This idea was shown in the bottom two plots of Figure 3.
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Fig. 3: Approximate k-NN

Dimensionality Reduction

All considered MI estimators introduce bias when the dimension increases and
lack efficiency on high-dimensional data and large sample sizes (Figure 4).
Lombardi and Pant [5] introduced the non-parametric k-NN entropy estimator
(kpN), which uses the Gaussian distribution as the assumption of the local den-
sity distribution, which improves the estimates for both high-dimensional and
highly dependent data. However, it is not developed to be a MI estimator, intro-
duces bias when dimension increases and lacks efficiency.

A different approach relies on random dimensionality reduction methods. Ailon
and Chazelle [2] showed that the fast and sparse Johnson-Lindenstrauss trans-
forms can be implemented on £-NN related algorithms. An extension of recent
results by Lotz [6] and Arya et al [3] shows that features of data that are directly
relevant to the estimation of entropy and mutual information, are preserved un-
der randomized dimensionality reduction. Following the conclusions of these two
papers and aforementioned approximate £-NN estimator, we aim to design new
k-NN estimators based on fast and sparse Johnson-Lindenstrauss transforms in
order to reduce the dimension and hence computational cost.
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Fig. 4: (Left)Time spent (Right)MI estimation
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