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We are interested in the solution of

Ax+e=b, AERMN peRM ecRM
*
coming from suitable discretization of

/nk(s. £)F(t)dt + <(s) = g(s)

Modeling inverse problems
m the process k (resp. A), the output g (resp. b) are known;
m the input f (resp. x) is unknown
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Iterative Regularization: Krylov Subspace Methods = Sparsity enforcing ¢, regularisation term b Iterative Regularization: FGMRES and FLSQR
~ |
Common framework for Krylov Subspace methods for ] =]
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R(Vi) = Ki(C.d) = span{d. Cd. ..., C*"'d} W (x) = diag ((|lxlil 7 )ic,...0) expanding the decomposition
by updating a partial decomposition of A of the form: with Hy € R
ok Approximate by a sequence
with  Hy € RUDx m Consider the approximation x, = Zyy
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X = arg min [[Ax — blo+ M [Wixl3+c, Wi = W) (x 1) m Solve the projected LS:
u Consider the approximation x = ‘
u Solve the projected LS: or, equivalently, Yk = arg min ||b — AZys||2 = arg min |[di — Hiyll2-
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Define ,
TP (x) = | Ax — b]3 ,\Hw’”‘(x)x L

Lemma The sequence { T(P)(x;) } =1 for 0 < p < 2, where x, is the
approximated solution computed after k steps of the IRW-FGMRES
or the IRW-FLSQR methods, is decreasing monotonically and it is
bounded from below by zero

Theorem The sequence where x s the approximated I
solution computed after k steps of or
with p > 0, is such that

Jim i = xal2 =0
Fig. 1: Setting for the star_cluster test problem. (a) True image Z¢rue, (b) Noisy
measurement b. Moreover, it
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Fig. 2: star_cluster test problem tested with the discrepancy principle. (a) history
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of the relative error norms (i.e., relative error norm against iteration number) for the
new IRW-FGMRES and different p norms. (b) history of the relative error norms for
the new IRW-FGMRES and other Krylov-based solvers, (c) history of the relative
residual norms (i.e., relative residual norm against iteration number) for the new
IRW-FGMRES and other Krylov-based solvers
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