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Deep Learning = Alchemy?

„Ali Rahimi, a researcher in arti�cial intelligence (AI) at Google in San 

Francisco, California, took a swipe at his �eld last December—and 

received a 40-second ovation for it. Speaking at an AI conference, 

Rahimi charged that machine learning algorithms, in which 

computers learn through trial and error, have become a form 

of „alchemy."  Researchers, he said, do not know why some algo-

rithms work and others don't, nor do they have rigorous criteria 

for choosing one AI architecture over another....“ 

                                                                                                       Science, May 2018
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Theoretical Foundations of Deep Learning
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The Mathematics of Deep Neural Networks

Definition:
Assume the following notions:

I d ∈ N: Dimension of input layer.

I L: Number of layers.

I N: Number of neurons.

I ρ : R→ R: (Non-linear) function called activation function.

I T` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps.

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).
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Affine Linear Maps and Weights

Remark: The affine linear map T` is defined by a matrix A` ∈ RN`−1×N`

and an affine part b` ∈ RN` via

T`(x) = A`x + b`.
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Training of Deep Neural Networks

High-Level Set Up:
I Samples (xi , f (xi ))mi=1 of a function

such as f :M→ {1, 2, . . . ,K}.

I Select an architecture of a deep neural network,
i.e., a choice of d , L, (N`)

L
`=1, and ρ.

Sometimes selected entries of the matrices (A`)
L
`=1,

i.e., weights, are set to zero at this point.

I Learn the affine-linear functions (T`)
L
`=1 = (A` ·+b`)

L
`=1 by

min
(A`,b`)`

m∑
i=1

L(Φ(A`,b`)`(xi ), f (xi )) + λR((A`, b`)`)

yielding the network Φ(A`,b`)` : Rd → RNL ,

Φ(A`,b`)`(x) = TLρ(TL−1ρ(. . . ρ(T1(x))).

This is often done by stochastic gradient descent.

Goal: Φ(A`,b`)` ≈ f
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Fundamental Questions concerning Deep Neural Networks

I Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

; Applied Harmonic Analysis, Approximation Theory, ...

I Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

; Differential Geometry, Optimal Control, Optimization, ...

I Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

; Learning Theory, Optimization, Statistics, ...

I Interpretability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

; Information Theory, Uncertainty Quantification, ...
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Impact of Deep Learning on Mathematics
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Impact of Deep Learning on Mathematics

Some Examples:

I Inverse Problems
; Image denoising (Burger, Schuler, Harmeling; 2012)
; Superresolution (Klatzer, Soukup, Kobler,

Hammernik, Pock; 2017)
; Limited-angle tomography (Bubba, K, Lassas,

März, Samek, Siltanen, Srinivan; 2018)
; Edge detection (Andrade-Loarca, K, Öktem,

Petersen; 2019)

I Numerical Analysis of Partial Differential Equations
; Schrödinger equation (Rupp, Tkatchenko, Müller,

von Lilienfeld; 2012 –)
; Parametric PDEs (K, Petersen, Raslan, Schneider;

2019) (Geist, Petersen, Raslan, Schneider, K; 2020)
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Deep Learning for Inverse Problems

Example: Limited-Angle Computed Tomography
A CT scanner samples the Radon transform

Rf (φ, s) =

∫
L(φ,s)

f (x)dS(x),

for L(φ, s) =
{
x ∈ R2 : x1 cos(φ) + x2 sin(φ) = s

}
, φ ∈ [−π/2, π/2), and s ∈ R.

Challenging inverse problem if Rf (·, s) is only sampled on [−φ, φ], φ < π/2

Learn the Invisible (Bubba, K, Lassas, März, Samek, Siltanen, Srinivan; 2018):

Step 1: Use model-based methods as far as possible

I Solve with sparse regularization using shearlets.

Step 2: Use data-driven methods where it is necessary

I Use a deep neural network to recover the missing components.

Step 3: Carefully combine both worlds

I Combine outcome of Step 1 and 2.
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Learn the Invisible (LtI)
(Bubba, K, Lassas, März, Samek, Siltanen, Srinivan; 2018)

Original

Filtered Backprojection Sparse Regularization with Shearlets

[Gu & Ye, 2017] Learn the Invisible (LtI)
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Deep Network Shearlet Edge Extractor (DeNSE)
(Andrade-Loarca, K, Öktem, Petersen; 2019)

Original

Human Annotation SEAL [Yu et al; 2018]

CoShREM [Reisenhofer et al.; 2015] DeNSE
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Deep Learning for (Parametric) PDEs

Parametric Map:

Rp ⊃ Y 3 y 7→ uy ∈ H such that L(uy , y) = fy .

Curse of Dimensionality: Computational cost is exponential in p!

Theoretical Approach (K, Petersen, Raslan, Schneider; 2019):

Expressivity

I We show the existence of a neural network Φ which approximates the
parametric map, i.e., ‖Φ− uy‖ ≤ ε for all y ∈ Y.

Complexity Analysis

I We prove that the complexity of the neural network Φ does not suffer from
the curse of dimensionality.
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Numerical Results
(Geist, Petersen, Raslan, Schneider, K; 2020)

Set-Up:

I Parametric diffusion equation with various parametrizations

I Fixed neural network: 11 layers and 0.2-LReLU

I Training set: 20000 i.i.d. parameter samples

Example (p = 91):

The performance does not suffer from the curse of dimensionality!
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Data-Driven Versus Model-Based Approaches?

Optimal balancing of
data-driven and model-based approaches!
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Mathematics of Deep Neural Networks

I Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

; Applied Harmonic Analysis, Approximation Theory, ...

I Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

; Differential Geometry, Optimal Control, Optimization, ...

I Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

; Learning Theory, Optimization, Statistics, ...

I Interpretability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

; Information Theory, Uncertainty Quantification, ...
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Expressivity
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Main Research Goal

Some Questions:

I Which architecture to choose for a particular application?

I What is the expressive power of a given architecture?

I What effect has the depth of a neural network in this respect?

I What is the complexity of the approximating neural network?

I Can deep neural networks beat the curse of dimensionality?

General Mathematical Problem:
Given a function class C and f ∈ C as well as an accuracy ε > 0, does
there exist a neural network Φ such that

‖Φ− f ‖ ≤ ε,

and which complexity does Φ have?
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Function Approximation in a Nutshell

Goal: Given C ⊆ L2(Rd) and (ϕi )i∈I ⊆ L2(Rd). Measure the suitability of
(ϕi )i∈I for uniformly approximating functions from C.

Definition: The error of best N-term approximation of some f ∈ C is
given by

‖f − fN‖2 := inf
IN⊂I ,#IN=N,(ci )i∈IN

‖f −
∑
i∈IN

ciϕi‖2.

The largest γ > 0 such that

sup
f ∈C
‖f − fN‖2 = O(N−γ) as N →∞

determines the optimal (sparse) approximation rate of C by (ϕi )i∈I .

Approximation accuracy ↔ Complexity of approximating system
in terms of sparsity
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Example: Shearlet Systems

Definition (K, Labate; 2006):

Aj :=

(
2j 0

0 2j/2

)
, Sk :=

(
1 k
0 1

)
, j , k ∈ Z.

Then
ψj ,k,m := 2

3j
4 ψ(SkAj · −m).
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(Cone-adapted) Discrete Shearlet Systems

Definition (K, Labate; 2006):
The (cone-adapted) discrete shearlet system SH(c ;φ, ψ, ψ̃), c > 0,
generated by φ ∈ L2(R2) and ψ, ψ̃ ∈ L2(R2) is the union of

{φ(· − cm) : m ∈ Z2},

{23j/4ψ(SkA2j · −cm) : j ≥ 0, |k | ≤ d2j/2e,m ∈ Z2},

{23j/4ψ̃(S̃k Ã2j · −cm) : j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2}.

Theorem (K, Lim; 2011):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let ψ̂, ˆ̃ψ satisfy certain
decay condition. Then SH(φ, ψ, ψ̃) provides an optimally sparse
approximation of cartoon-like functions f , i.e.,

‖f − fN‖2 ≤ C · N−1 · (logN)3/2, N →∞.
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Complexity of a Deep Neural Network

Recall:

I d ∈ N: Dimension of input layer.

I L: Number of layers.

I N: Number of neurons.

I ρ : R→ R: (Non-linear) function called activation function.

I T` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps x 7→ A`x + b`.

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).

Measure for Complexity: The number of weights W (Φ) is defined by

W (Φ) :=
L∑
`=1

(‖A`‖0 + ‖b`‖0) .

We write Φ ∈ NNL,W (Φ),d ,ρ.
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I T` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps x 7→ A`x + b`.

Then Φ : Rd → RNL given by

Φ(x) = TLρ(TL−1ρ(. . . ρ(T1(x))), x ∈ Rd ,

is called (deep) neural network (DNN).

Measure for Complexity: The number of weights W (Φ) is defined by

W (Φ) :=
L∑
`=1

(‖A`‖0 + ‖b`‖0) .

We write Φ ∈ NNL,W (Φ),d ,ρ.
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Sparsely Connected Deep Neural Networks

Key Problem:

I Deep neural networks employed in practice
often consist of hundreds of layers.

I Training and storage of such networks
pose formidable (computational) challenge.

; Employ deep neural networks with sparse connectivity!

Example of Speech Recognition:

I Typically speech recognition is performed in the cloud (e.g. SIRI).

I New speech recognition systems (e.g. Android) can operate offline
and are based on a sparsely connected deep neural network.

Key Challenge:
Approximation accuracy ↔ Complexity of approximating DNN

in terms of sparse connectivity!
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One Size Fits All?

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991):
Let d ∈ N, K ⊂ Rd compact, f : K → R continuous, ρ : R→ R
continuous and not a polynomial. Then, for each ε > 0, there exist
N ∈ N, ak , bk ∈ R,wk ∈ Rd such that

‖f −
N∑

k=1

akρ(〈wk , ·〉 − bk)‖∞ ≤ ε.

The complexity can be arbitrarily large!

Theorem (Yarotsky; 2017): For all f ∈ C = C s([0, 1]d) and ρ the ReLU
(Rectifiable Linear Unit ρ(x) = max{0, x}), there exist neural networks
(Φn)n∈N with L(Φn) ≈ log(n) such that

‖f − Φn‖∞ . W (Φn)−
s
d → 0 as n→∞.

This result is not optimal!
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A Fundamental Lower Bound

Complexity of a Function Class:
The optimal exponent γ∗(C) measures the complexity of C ⊂ L2(Rd).

Theorem (Bölcskei, Grohs, K, and Petersen; 2019):
Let d ∈ N, ρ : R→ R, and let C ⊂ L2(Rd). Further, let

Learn : (0, 1)× C → NN∞,∞,d ,ρ
satisfy that, for each f ∈ C and 0 < ε < 1,

sup
f ∈C
‖f − Learn(ε, f )‖2 ≤ ε.

Then, for all γ < γ∗(C),

εγ sup
f ∈C

W (Learn(ε, f ))→∞, as ε→ 0.

Conceptual bound independent on the learning algorithm!
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Optimally Memory Efficient Neural Networks

Key Ideas:

I Consider a representation system which provides an optimal
approximation rate of a specific function class.

I Realize each element of a representation system by a DNN.

I Control the number of edges of those DNNs.

Choice for our Result:
Use the affine system of shearlets.

Theorem (Bölcskei, Grohs, K, and Petersen; 2019):
Let ρ be an admissible smooth rectifier, and let ε > 0. Then, for all
cartoon-like functions f and N ∈ N, there exists Φ ∈ NN3,O(N),2,ρ with

‖f − Φ‖2 . N−1+ε → 0 as N →∞.

This is the optimal rate; hence the first bound is sharp!

DNNs achieve optimal approx. properties of all affine systems combined!
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Numerical Experiments (with ReLUs & Backpropagation)
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Mathematics of Deep Neural Networks

I Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

; Applied Harmonic Analysis, Approximation Theory, ...

I Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

; Differential Geometry, Optimal Control, Optimization, ...

I Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

; Learning Theory, Optimization, Statistics, ...

I Interpretability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

; Information Theory, Uncertainty Quantification, ...
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Interpretability
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General Problem Setting

Question:

I Given a trained neural network.

I We don’t know what the training data was nor how it was trained.

; Can we determine how it operates?

Opening the Black Box!

Why is this important?

I Assume a job application is rejected.

I Imagine this rejection was done by a neural network-based algorithm.

; The applicant wants to know the reasons!

Holy Grail:

I Explanation of a decision indistinguishable from a human being!
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History of the Field

Previous Relevance Mapping Methods:

I Gradient based methods:

I Sensitivity Analysis (Baehrens, Schroeter, Harmeling, Kawanabe, Hansen,
Müller, 2010)

I SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017)

I Backwards propagation based methods:

I Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015)
I Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen,

Müller, Samek, 2015)
I Deep Taylor (Montavon, Samek, Müller, 2018)

I Surrogate model based methods:

I LIME (Local Interpretable Model-agnostic Explanations) (Ribeiro, Singh,
Guestrin, 2016)

I Game theoretic methods:

I Shapley values (Shapley, 1953), (Kononenko, Štrumbelj, 2010)
I SHAP (Shapley Additive Explanations) (Lundberg, Lee, 2017)
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What is Relevance?

Main Goal: We aim to understand decisions of “black-box” predictors!

map for digit 3 map for digit 8

Challenges:

I What exactly is relevance in a mathematical sense?
; Rigorous definition of relevance by information theory.

I What is a good relevance map? ; Formulation of interpretability as
optimization problem.
; Theoretical analysis of complexity.

I How to compare different relevance maps?
; Canonical framework for comparison.
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The Relevance Mapping Problem
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The Relevance Mapping Problem

The Setting: Let

I Φ: [0, 1]d → [0, 1] be a classification function,

I x ∈ [0, 1]d be an input signal.

The Task:

I Determine the most relevant components of x for the prediction Φ(x).

I Choose S ⊆ {1, . . . , d} of components that are considered relevant.

I S should be small (usually not everything is relevant).

I Sc is considered non-relevant.

Original image x Relevant components S Non-relevant components Sc
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Rate-Distortion Viewpoint

Alice Bob

Original image x Partial image S Random completion y

Φ(x) = 0.97

“Monkey”

Φ(y) = 0.91

“Monkey”

Obfuscation: Let

I n ∼ V be a random noise vector, and

I y be a random vector defined as yS = xS and ySc = nSc .
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Rate-Distortion Viewpoint

Recall: Let

I Φ: [0, 1]d → [0, 1] be a classification function,

I x ∈ [0, 1]d be an input signal,

I n ∼ V be a random noise vector, and

I y be a random vector defined as yS = xS and ySc = nSc .

Expected Distortion:

D(S) = D(Φ, x , S) = E
[

1

2
(Φ(x)− Φ(y))2

]
Rate-Distortion Function:

R(ε) = min
S⊆{1,...,d}

{|S | : D(S) ≤ ε}

; Use this viewpoint for the definition of a relevance map!
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Finding a minimizer of R(ε)

or even approximating it is very hard!
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Hardness Results

Boolean Functions as ReLU Neural Networks:

Φ(x1, x2, x3)

∨

∧

x1 x2

¬

x3

+1

+1

−1 +1

x1 x2 x3

+1 +1 −1

−1 −1

−1

−%

[−1 −1
]
%

[1 1 0
0 0 −1

] x1
x2
x3

 +

[
−1
1

] + 1

 + 1

ReLU activation function %(x) = max{0, x}

The Binary Setting: Let

I Φ: {0, 1}d → {0, 1} be classifier functions,

I x ∈ {0, 1}d be signals, and

I V = U({0, 1}d) be a uniform distribution.
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Hardness Results

We consider the binary case.

Theorem (Wäldchen, Macdonald, Hauch, K, 2019):
Given Φ, x , k ∈ {1, . . . , d}, and ε < 1

4 . Deciding whether R(ε) ≤ k is

NPPP-complete.

Finding a minimizer of R(ε) is hard!

Theorem (Wäldchen, Macdonald, Hauch, K, 2019):
Given Φ, x , and α ∈ (0, 1). Approximating R(ε) to within a factor of d1−α

is NP-hard.

Even the approximation problem of it is hard!

Preprint: “The Computational Complexity of Understanding Network Decisions”, https://arxiv.org/abs/1905.09163
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What is NPPP?

The Complexity Class NPPP:
Many important problems in artificial intelligence belong to this class.

Some Examples:

I Planning under uncertainties

I Finding maximum a-posteriori
configurations in graphical
models

I Maximizing utility functions in
Bayesian networks

Agent

Plan

Nature

Random Behaviour

Success Probability
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Our Method:

Rate-Distortion Explanation (RDE)
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Problem Relaxation

Discrete problem Continuous problem

Relevant set S ⊆ {1, . . . , d}

s ∈ [0, 1]d

Obfuscation yS = xS , ySc = nSc

y = s � x + (1− s)� n

Distortion D(S)

D(s)

Rate/Size |S |

‖s‖1

Resulting Minimization Problem:

minimize D(s) + λ‖s‖1 subject to s ∈ [0, 1]d
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Numerical Experiments

Gitta Kutyniok The Mathematics of Deep Learning MathODS 2020 37 / 45



MNIST Experiment

Data Set

Image size 28× 28× 1
Number of classes 10
Training samples 50000

Test accuracy: 99.1%

input

convolution

5× 5× 1× 32

average pooling

2× 2

convolution

5× 5× 32× 64

average pooling

2× 2

convolution

5× 5× 64× 64

average pooling

2× 2

flatten

fully connected

576× 1024

fully connected

1024× 10

softmax

output

28× 28× 1

28× 28× 32

14× 14× 32

14× 14× 64

7× 7× 64

7× 7× 64

3× 3× 64

576

1024

10

10

MNIST dataset of handwritten digits (LeCun, Cortes, 1998)
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MNIST Experiment

image SmoothGrad LRP-α-β SHAP RDE (diagonal)

Sensitivity Guided Backprop Deep Taylor LIME RDE (low-rank)

SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), SHAP (Lundberg, Lee, 2017),

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, Samek, Müller, 2018),

LIME (Ribeiro, Singh, Guestrin, 2016)
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MNIST Experiment
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RDE (low-rank)

SHAP

LIME

LRP-α-β

Deep Taylor

Sensitivity

SmoothGrad

Guided Backprop

SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), SHAP (Lundberg, Lee, 2017),

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, Samek, Müller, 2018),

LIME (Ribeiro, Singh, Guestrin, 2016)
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STL-10 Experiment

Data Set

Image size 96× 96× 3
(224× 224× 3)

Number of classes 10
Training samples 4000

Test accuracy: 93.5%

(VGG-16 convolutions pretrained on Imagenet)

input

convolution

3× 3× 3× 64

convolution

3× 3× 64× 64

average pooling

2× 2

convolution

3× 3× 64× 128

conv

3× 3× 128× 128
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2× 2

convolution

3× 3× 128× 256

convolution

3× 3× 256× 256

convolution

3× 3× 256× 256

average pool

2× 2

convolution

3× 3× 256× 512

convolution

3× 3× 512× 512

convolution

3× 3× 512× 512

average pool

2× 2

convolution

3× 3× 512× 512

convolution

3× 3× 512× 512

convolution

3× 3× 512× 512

average pool

2× 2

flatten

fully connected

25088× 4096

fully connected

4096× 4096

fully connected

4096× 10

softmax

output

224× 224× 3

224× 224× 64

224× 224× 64

112× 112× 64

112× 112× 128

112× 112× 128

56× 56× 128

56× 56× 256

56× 56× 256

56× 56× 256

28× 28× 256

28× 28× 512

28× 28× 512

28× 28× 512

28× 28× 512

14× 14× 512

14× 14× 512

14× 14× 512

14× 14× 512

7× 7× 512

25088
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STL-10 Experiment

image SmoothGrad LRP-α-β SHAP RDE (diagonal)

Sensitivity Guided Backprop Deep Taylor LIME RDE (low-rank)

SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), SHAP (Lundberg, Lee, 2017),

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, Samek, Müller, 2018),

LIME (Ribeiro, Singh, Guestrin, 2016)
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STL-10 Experiment
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SmoothGrad (Smilkov, Thorat, Kim, Viégas, Wattenberg, 2017), Layer-wise Relevance Propagation (Bach, Binder, Montavon, Klauschen, Müller, Samek, 2015), SHAP (Lundberg, Lee, 2017),

Sensitivity Analysis (Simonyan, Vedaldi, Zisserman, 2013), Guided Backprop (Springenberg, Dosovitskiy, Brox, Riedmiller, 2015), Deep Taylor Decompositions (Montavon, Samek, Müller, 2018),

LIME (Ribeiro, Singh, Guestrin, 2016)

Gitta Kutyniok The Mathematics of Deep Learning MathODS 2020 43 / 45



Conclusions
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What to take Home...?

Deep Learning:

I Impressive performance in combination with classical
mathematical methods (Inverse Problems, PDEs, ...).

I A theoretical foundation of neural networks is largely missing:
Expressivity, Learning, Generalization, and Interpretability.

Expressivity:

I Fundamental lower bound on the complexity, leading to the construction of
optimally memory-efficient networks.

I Neural networks are as powerful approximators as
classical affine systems such as wavelets, shearlets, ...

Interpretability:

I We provide a precise mathematical notion for relevance based on
rate-distortion theory.

I We show that solving the optimization problem is hard.

I RDE considers a relaxed version and outperforms current methods.
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